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On some solutions of the Dirac equation
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‡ Sloane Physics Laboratory, Yale University, PO Box 6666, New Haven, CT 09511, USA

Received 21 November 1995

Abstract. The solutions of the Dirac equation with minimal and non-minimal coupling terms
are investigated by transforming the relativistic equation into a Schrödinger-like one. Earlier
results are discussed in a unified framework and certain solutions of a large class of potentials are
given. It is pointed out that techniques used in the analysis of quasi-exactly solvable potentials
of non-relativistic quantum mechanics can be applied to relativistic problems as well.

The introduction of exactly solvable potentials in the Dirac equation has been a subject
of much discussion [1–4]. The electromagnetic potentials can be considered according to
the minimal substitutionpµ → pµ − (e/c)Aµ, in this equation, whereAµ is the 4-vector
potential.

One of the examples of the Dirac equation with a minimal substitution, which can be
solved exactly, is of course the relativistic hydrogen atom [5] corresponding toAi = 0, i =
1, 2, 3 and(e/c)A0 ≡ φ, whereφ = −(e2/r).

A non-minimal substitution in the Dirac equation gives other kinds of interactions.
Among these problems we have, for example, the so-called Dirac oscillator named by
Moshinsky and Szczepaniak [1] and studied before by Cook [2]. The idea of the Dirac
oscillator is the non-minimal substitutionp → p− iωmrβ, whereω is the frequency of the
oscillator,m the mass of the particle,r the position vector andβ = γ 0.

The interest in the paper of Moshinsky and Szczepaniak has given rise to a number
of investigations concerning its covariance [6], its symmetry properties [7] and its
generalization to many-particle systems [8]. Also, there have been some works connected
with the search of new interactions in the Dirac equation [3, 4]. Among the papers on this
matter we would like to cite the one of Castañoset al [3], where the authors propose a large
class of Dirac oscillator-type couplings, paying attention to the supersymmetry properties
of these systems. On the other hand, in the paper of Domı́nguez-Adame and González [4]
a particular example of minimal and non-minimal coupling is studied.

Our present work was motivated by the idea of connecting the methods used in the
analysis of exactly solvable potentials in non-relativistic quantum mechanics with the
solution procedure of the Dirac equation containing various interaction terms. To this
end we apply an inverse method: we start with a general expression for the minimal and
non-minimal couplings in the Dirac equation, and then we reduce this equation to its radial
form, in order to study some families of potentials which could be solved exactly or quasi-
exactly, making a similar analysis as in the search of solvable or quasi-exactly solvable
potentials in non-relativistic quantum mechanics.
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In fact, for some specific values of our parameters, we cover some examples analysed by
other authors [3, 4], and discuss some polynomial potentials, such as the sextic anharmonic
oscillator, which is an example of a quasi-exactly solvable potential.

We consider the Dirac equation of the form (c = h̄ = 1)[
α · (p − iβv(r)r − u(r)r) + mβ − E

]
9 = 0 (1)

wherev(r) andu(r) are some functions ofr andα andβ are defined as

α =
(

0 σ
σ 0

)
β =

(
I 0
0 −I

)
. (2)

Writing down equation (1) separately for the two components91 and92 of

9 =
(

91

92

)
we get

(m − E)91 + σ · [
p + (iv(r) − u(r))r

]
92 = 0 (3a)

σ · [
p − (iv(r) + u(r))r

]
91 − (m + E)92 = 0. (3b)

Applying the standard procedure this reduces to the following equation for the91

component:[
p2 − 2u(r)r · p + (v2(r) + u2(r))r2 − 2v(r)σ · L − r

(
dv

dr
− i

du

dr

)
− 3(v(r) − iu(r))

]
91

= (E2 − m2)91. (4)

Separating the radial, angular and spin variables by writing91 as

91 = f (r)
1

r

∣∣∣∣(l
1

2

)
jmj

〉
(5)

the following radial equation is obtained forf (r):[
− d2

dr2
+ 2iru(r)

d

dr
+ l(l + 1)

r2
+ (rv(r))2 − d

dr
(rv(r)) − 2(K + 1)v(r)

+ (ru(r))2 + i
d

dr
(ru(r)) − ε

]
f (r) = 0 (6)

where

K = j (j + 1) − l(l + 1) − 3
4 =

{
l = j − 1

2 if j = l + 1
2

−l − 1 = −j − 3
2 if j = l − 1

2

(7a)

and

ε = E2 − m2. (7b)
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Considering the following functional form forf (r):

f (r) = rνexp(−z(r))8(r) (8)

we find after straightforward calculation that thisf (r) solves equation (6) for the special
case of8(r) = constant andε = 0 (i.e. E2 = m2) if z(r) is chosen as

z(r) =
∫ r

r ′(−iu(r ′) + v(r ′)) dr ′ (9)

provided that

ν(ν − 1) = l(l + 1) (10a)

and

ν = K + 1 (10b)

hold. The solutions of (10a) ν = l +1 and−l, automatically satisfy (10b) for thej = l + 1
2

and j = l − 1
2 cases, respectively. Up to this point the functionsv(r) and u(r) have not

been specified yet.
Further solutions of (6) forε 6= 0 can be obtained by using8(r) 6= constant, which

leads to a second-order differential equation for8(r). From the possible choices for8(r)

in what follows we consider the functional form

8(r) = F(σ, ρ; g(r)) (11)

whereF(σ, ρ; g) solves the confluent hypergeometric differential equation

g
d2F

dg2
+ (ρ − g)

dF

dg
− σF = 0. (12)

When transforming equation (6) into (12) by the use off (r) in (8), (9) and (11) we arrive
at the following expressions for the previously unspecified functionsg(r) andv(r):

g(r) = a r2 (a > 0) (13a)

v(r) = a + b

r2
(13b)

and also get

ρ = ν + 1
2 + b (14a)

and

σ = − ε

4a
− K + 1

2
+ ν

2
(14b)
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with

ν =
{

b + 1
2 + |j − b| for j = l + 1

2

b + 1
2 + |j + 1 + b| for j = l − 1

2.
(14c)

Note, however, that we have not obtained any restictions foru(r) yet.
The wavefunctions take the form

f (+)(r) = r
1
2 +|j−b| exp(− 1

2ar2 + iw(r))F (−nr, 2b + 1 + |j − b|; ar2) (15a)

and

f (−)(r) = r
1
2 +|j+1+b| exp(− 1

2ar2 + iw(r))F (−nr, 2b + 1 + |j + 1 + b|; ar2) (15b)

where we have used superscripts(+) and(−) to distinguish between the cases forj = l+ 1
2

andj = l − 1
2, respectively, andw(r) is defined as

w(r) =
∫ r

r ′u(r ′) dr ′. (16)

This means that the functionu(r) which has not been specified up to this point contributes
to a phase factor. The corresponding energy eigenvalues are obtained from

ε(+) ≡ (E(+))2 − m2 = 2a(N − 2j + 1
2 + b + |j − b|) (17a)

and

ε(−) ≡ (E(−))2 − m2 = 2a(N + 1
2 + b + |j + 1 + b|) (17b)

with N = 2nr + l.
These results can be interpreted as the generalization of the Dirac oscillator [1], which

corresponds toa = mω, b = 0 andu(r) = 0. The extension of the Dirac oscillator by
Castãnos et al [3] is also included in these formulae withu(r) = 0, although the energy
eigenvalues published in that work differ slightly from those in (17) due to a different
parametrization used by the authors. In addition to these results, equations (16) and (17) also
include another extension of the Dirac oscillator by Domı́nguez-Adame and González [4]
as a special case, where a linear potential has been considered in the minimal coupling term
in addition to the Dirac oscillator. This situation corresponds to takinga = mωs , b = 0 and
u(r) = imωv. These authors also noted that the appearance ofωv does not modify the energy
spectrum, and the new term with respect to the Dirac oscillator influences only the form
of the wavefunctions. A simple explanation for this result can be given remembering that
u(r) basically represented a phase factor. This is not evident from the formulae presented
in [4]; nevertheless, one should remember that chosing an imaginary, rather than a real,
u(r) would break the Hermiticity of the Hamiltonian in (1).

We note that similar extensions of other solvable Dirac equations also seem possible
by considering functional forms off (r) other than that in (8), (9) and (11). In order to
accomodate the Coulomb problem in this procedure one has to allow state-dependent (i.e.
quantum-number-dependent) functional forms forg(r) andz(r), as a result of whichf (r)

ceases to be separable into the product of the ground-state wavefunction and a confluent
hypergeometric function (see, e.g., [9]). Our procedure could be applied to the Coulomb
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problem by incorporating the above modifications, but this is beyond the scope of this work.
We only mention that substitutingv(r) = ar−1 + br−2 and u(r) = 0 in (6) leads to the
radial Coulomb Schr̈odinger equation, which then can be solved by standard procedures.
(This is the second example of solvable Dirac equations presented by Castañoset al [3].)

Another possible way is transforming the second-order differential equation in (6) into
the differential equation of other special functions. However, solvable problems associated
with the hypergeometric function (i.e. the Natanzon potentials [10] in non-relativistic
quantum mechanics, for example) have the drawback of being solvable for radial problems
with l = 0 only, which restricts their applicability in areas discussed here. The structure of
the Bessel equation also forbids the application of Bessel functions as8(r) in (8).

Other solvable problems allowing solutions for orbital angular momental other than zero
include, for example, polynomial potentials. These are usually interpreted as anharmonic
oscillators and are examples of quasi-exactly-solvable potentials [11]. These problems
cannot be solved in general, except for some special values of the potential parameters
when a finite number of exact energy eigenvalues can be determined together with the
corresponding wavefunctions. Such potentials can easily be accomodated in our approach
by substituting polynomial forms ofv(r) in (6). The solutions can then be written asf (r)

in (8) and (9) with8(r) being a polynomial. The solution for the ground state (i.e.ε = 0)
can immediately be given by setting8(r) = constant. The sextic anharmonic oscillator
[12], for example, corresponds to choosing

v(r) = c2r
2 + c0 u(r) = 0 (18)

and equation (6) reduces to[
− d2

dr2
+ l(l + 1)

r2
+c2

2r
6+2c2c0r

4+(c2
0−c2(2K+5))r2−(ε+c0(2K+3))

]
f (r) = 0

(19)

in this case, withK defined in (7a). Note that the coefficient of the sextic term is
always positive, which guarantees confinement. Also note that the quadratic term carries
j -dependence.

The ground-state solution for eachj = l + 1
2 is readily determined by substituting

v(r) in (18) into equations (9) and (8) with (10). This solvability is the result of the
particular structure of (6), which leads to a correlated behaviour of the potential parameters
(mentioned above) characterizing quasi-exactly solvable potentials. Other polynomial
potentials containing odd powers ofr (like the Coulomb term) as well can also be solved
directly for ε(+) = 0 andj = l+ 1

2 by this method. In thej = l− 1
2 case, however, only the

solutions singular at the origin (' r−l) can be obtained, as can be seen from (8) and (10).
Similar to the extension of the Dirac oscillator in the spirit of (19) the Dirac–Coulomb
problem can also be supplemented with additional potential terms.

It is remarkable that equations (8), (9) and (10) solve the differential equation (6) for
E2 = m2 andj = l + 1

2 (with 8(r) = constant) without any further assumptions. Besides
v(r) functions in a quasi-exactly solvable type equation in (6) this applies to non-quasi-
exactly solvable problems and even to non-polynomial forms ofv(r). The solutions obtained
this way are nodeless ones and can readily be written down for anyl. In the particular case
of the sextic oscillator (19) we find thatε(+) = (E(+))2 − m2 represents a solution for any
l in the j = l + 1

2 case, which means that the infinite degeneracy of the Dirac oscillator [1]
is maintained for the(E(+))2 = m2 levels if sextic (and correlated quadratic) terms are
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introduced. An interesting task would be to investigate whether the extra terms lift the
infinite degeneracy of the other levels and also the finite degeneracy of states withj = l− 1

2.
The solution of these problems, however, seems to require more complex functional forms
than that in (8) with a polynomial8(r). This is because the Hill determinant method [13]
fails to supply physically acceptable solutions other than that withE2 = m2 andj = l + 1

2
if 8(r) is chosen to be a polynomial. Further analysis of this and similar problems would
be worthwhile.

In conclusion, we have studied the solutions of the Dirac equation by applying
techniques used in the analysis of the Schrödinger equation. We have identified several
known exactly solvable relativistic problems as special cases of our approach and extended
the range of (partially) solvable Dirac equations by pointing out the relevance of quasi-
exactly solvable potentials to relativistic problems.
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[9] Lévai G 1989J. Phys. A: Math. Gen.22 689

[10] Natanzon G A 1979Teor. Mat. Fiz.38 146
[11] Ushveridze A K 1994Quasi-exactly solvable Models in Quantum Mechanics(Bristol: Institute of Physics)
[12] Singh V, Biswas S N and Datta K 1978Phys. Rev.D 1901
[13] Biswas S N, Datta K, Saxena R P, Srivastava P K and Varma V S 1971Phys. Rev.D 4 3617


